13 research outputs found

    An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking

    Get PDF
    Walking is a constrained movement which may best be observed during the double stance phase when both feet contact the floor. When analyzing a measured movement with an inverse dynamics model, a violation of these constrains will always occur due to measuring errors and deviations of the segments model from reality, leading to inconsistent results. Consistency is obtained by implementing the constraints into the model. This makes it possible to combine the inverse dynamics model with optimization techniques in order to predict walking patterns or to reconstruct non-measured rotations when only a part of the three-dimensional joint rotations is measured. In this paper the outlines of the extended inverse dynamics method are presented, the constraints which define walking are defined and the optimization procedure is described. The model is applied to analyze a normal walking pattern of which only the hip, knee and ankle flexions/extensions are measured. This input movement is reconstructed to a kinematically and dynamically consistent three-dimensional movement, and the joint forces (including the ground reaction forces) and joint moments of force, needed to bring about this movement are estimated

    Extramuscular myofascial force transmission alters substantially the acute effects of surgical aponeurotomy: assessment by finite element modeling

    Get PDF
    Effects of extramuscular myofascial force transmission on the acute effects of aponeurotomy were studied using finite element modeling and implications of such effects on surgery were discussed. Aponeurotomized EDL muscle of the rat was modeled in two conditions: (1) fully isolated (2) with intact extramuscular connections. The specific goal was to assess the alterations in muscle length-force characteristics in relation to sarcomere length distributions and to investigate how the mechanical mechanism of the intervention is affected if the muscle is not isolated. Major effects of extramuscular myofascial force transmission were shown on muscle length-force characteristics. In contrast to the identical proximal and distal forces of the aponeurotomized isolated muscle, substantial proximo-distal force differences were shown for aponeurotomized muscle with extramuscular connections (for all muscle lengths F dist > F prox after distal muscle lengthening). Proximal optimal length did not change whereas distal optimal length was lower (by 0.5 mm). The optimal forces of the aponeurotomized muscle with extramuscular connections exerted at both proximal and distal tendons were lower than that of isolated muscle (by 15 and 7%, respectively). The length of the gap separating the two cut ends of the intervened aponeurosis decreases substantially due to extramuscular myofascial force transmission. The amplitude of the difference in gap length was muscle length dependent (maximally 11.6% of the gap length of the extramuscularly connected muscle). Extramuscular myofascial force transmission has substantial effects on distributions of lengths of sarcomeres within the muscle fiber populations distal and proximal to the location of intervention: (a) Within the distal population, the substantial sarcomere shortening at the proximal ends of muscle fibers due to the intervention remained unaffected however, extramuscular myofascial force transmission caused a more pronounced serial distribution towards the distal ends of muscle fibers. (b) In contrast, extramuscular myofascial force transmission limits the serial distribution of sarcomere lengths shown for the aponeurotomized isolated muscle in the proximal population. Fiber stress distributions showed that extramuscular myofascial force transmission causes most sarcomeres within the aponeurotomized muscle to attain lengths favorable for higher force exertion. It is concluded that acute effects of aponeurotomy on muscular mechanics are affected greatly by extramuscular myofascial force transmission. Such effects have important implications for the outcome of surgery performed to improve impeded function since muscle in vivo is not isolated both anatomically and mechanically

    An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking

    No full text
    Walking is a constrained movement which may best be observed during the double stance phase when both feet contact the floor. When analyzing a measured movement with an inverse dynamics model, a violation of these constrains will always occur due to measuring errors and deviations of the segments model from reality, leading to inconsistent results. Consistency is obtained by implementing the constraints into the model. This makes it possible to combine the inverse dynamics model with optimization techniques in order to predict walking patterns or to reconstruct non-measured rotations when only a part of the three-dimensional joint rotations is measured. In this paper the outlines of the extended inverse dynamics method are presented, the constraints which define walking are defined and the optimization procedure is described. The model is applied to analyze a normal walking pattern of which only the hip, knee and ankle flexions/extensions are measured. This input movement is reconstructed to a kinematically and dynamically consistent three-dimensional movement, and the joint forces (including the ground reaction forces) and joint moments of force, needed to bring about this movement are estimated

    Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model

    Get PDF
    In previous applications of the finite element method in modeling mechanical behavior of skeletal muscle, the passive and active properties of muscle tissue were lumped in one finite element. Although this approach yields increased understanding of effects of force transmission, it does not support an assessment of the interaction between the intracellular structures and extracellular matrix. In the present study, skeletal muscle is considered in two domains: (1) the intracellular domain and (2) extracellular matrix domain. The two domains are represented by two separate meshes that are linked elastically to account for the trans-sarcolemmal attachments of the muscle fibers’ cytoskeleton and extracellular matrix. With this approach a finite element skeletal muscle model is developed, which allows force transmission between these domains with the possibility of investigating their interaction as well as the role of the trans-sarcolemmal systems.\ud \ud The model is applied to show the significance of myofascial force transmission by investigating possible mechanical consequences due to any missing link within the trans-sarcolemmal connections such as found in muscular dystrophies. This is realized by making the links between the two meshes highly compliant at selected intramuscular locations. The results indicate the role of extracellular matrix for a muscle in sustaining its physiological condition. It is shown that if there is an inadequate linking to the extracellular matrix, the myofibers become deformed beyond physiological limits due to the lacking of mechanical support and impairment of a pathway of force transmission by the extracellular matrix. This leads to calculation of a drop of muscle force and if the impairment is located more towards the center of the muscle model, its effects are more pronounced. These results indicate the significance of non-myotendinous force transmission pathways
    corecore